vertex_engine/subprojects/glm-0.9.9.8/glm/ext/matrix_clip_space.inl

556 lines
20 KiB
Plaintext
Raw Normal View History

2024-05-15 19:21:04 +03:00
namespace glm
{
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top)
{
mat<4, 4, T, defaultp> Result(static_cast<T>(1));
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = - static_cast<T>(1);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_ZO(T left, T right, T bottom, T top, T zNear, T zFar)
{
mat<4, 4, T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = static_cast<T>(1) / (zFar - zNear);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
Result[3][2] = - zNear / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_NO(T left, T right, T bottom, T top, T zNear, T zFar)
{
mat<4, 4, T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = static_cast<T>(2) / (zFar - zNear);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
Result[3][2] = - (zFar + zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_ZO(T left, T right, T bottom, T top, T zNear, T zFar)
{
mat<4, 4, T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = - static_cast<T>(1) / (zFar - zNear);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
Result[3][2] = - zNear / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_NO(T left, T right, T bottom, T top, T zNear, T zFar)
{
mat<4, 4, T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
Result[3][2] = - (zFar + zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoZO(T left, T right, T bottom, T top, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT
return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
# else
return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoNO(T left, T right, T bottom, T top, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT
return orthoLH_NO(left, right, bottom, top, zNear, zFar);
# else
return orthoRH_NO(left, right, bottom, top, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH(T left, T right, T bottom, T top, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT
return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
# else
return orthoLH_NO(left, right, bottom, top, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH(T left, T right, T bottom, T top, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT
return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
# else
return orthoRH_NO(left, right, bottom, top, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO
return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO
return orthoLH_NO(left, right, bottom, top, zNear, zFar);
# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO
return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO
return orthoRH_NO(left, right, bottom, top, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal)
{
mat<4, 4, T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom);
Result[2][2] = farVal / (farVal - nearVal);
Result[2][3] = static_cast<T>(1);
Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_NO(T left, T right, T bottom, T top, T nearVal, T farVal)
{
mat<4, 4, T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom);
Result[2][2] = (farVal + nearVal) / (farVal - nearVal);
Result[2][3] = static_cast<T>(1);
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal)
{
mat<4, 4, T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom);
Result[2][2] = farVal / (nearVal - farVal);
Result[2][3] = static_cast<T>(-1);
Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_NO(T left, T right, T bottom, T top, T nearVal, T farVal)
{
mat<4, 4, T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom);
Result[2][2] = - (farVal + nearVal) / (farVal - nearVal);
Result[2][3] = static_cast<T>(-1);
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumZO(T left, T right, T bottom, T top, T nearVal, T farVal)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT
return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
# else
return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumNO(T left, T right, T bottom, T top, T nearVal, T farVal)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT
return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
# else
return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH(T left, T right, T bottom, T top, T nearVal, T farVal)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT
return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
# else
return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH(T left, T right, T bottom, T top, T nearVal, T farVal)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT
return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
# else
return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustum(T left, T right, T bottom, T top, T nearVal, T farVal)
{
# if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO
return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO
return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO
return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO
return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_ZO(T fovy, T aspect, T zNear, T zFar)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][2] = zFar / (zNear - zFar);
Result[2][3] = - static_cast<T>(1);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_NO(T fovy, T aspect, T zNear, T zFar)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
Result[2][3] = - static_cast<T>(1);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_ZO(T fovy, T aspect, T zNear, T zFar)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][2] = zFar / (zFar - zNear);
Result[2][3] = static_cast<T>(1);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_NO(T fovy, T aspect, T zNear, T zFar)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[2][3] = static_cast<T>(1);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveZO(T fovy, T aspect, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT
return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
# else
return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveNO(T fovy, T aspect, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT
return perspectiveLH_NO(fovy, aspect, zNear, zFar);
# else
return perspectiveRH_NO(fovy, aspect, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT
return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
# else
return perspectiveLH_NO(fovy, aspect, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT
return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
# else
return perspectiveRH_NO(fovy, aspect, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO
return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO
return perspectiveLH_NO(fovy, aspect, zNear, zFar);
# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO
return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO
return perspectiveRH_NO(fovy, aspect, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_ZO(T fov, T width, T height, T zNear, T zFar)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][2] = zFar / (zNear - zFar);
Result[2][3] = - static_cast<T>(1);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_NO(T fov, T width, T height, T zNear, T zFar)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
Result[2][3] = - static_cast<T>(1);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_ZO(T fov, T width, T height, T zNear, T zFar)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][2] = zFar / (zFar - zNear);
Result[2][3] = static_cast<T>(1);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_NO(T fov, T width, T height, T zNear, T zFar)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[2][3] = static_cast<T>(1);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovZO(T fov, T width, T height, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT
return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
# else
return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovNO(T fov, T width, T height, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT
return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
# else
return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT
return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
# else
return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT
return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
# else
return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar)
{
# if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO
return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO
return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO
return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO
return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear)
{
T const range = tan(fovy / static_cast<T>(2)) * zNear;
T const left = -range * aspect;
T const right = range * aspect;
T const bottom = -range;
T const top = range;
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
Result[2][2] = - static_cast<T>(1);
Result[2][3] = - static_cast<T>(1);
Result[3][2] = - static_cast<T>(2) * zNear;
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear)
{
T const range = tan(fovy / static_cast<T>(2)) * zNear;
T const left = -range * aspect;
T const right = range * aspect;
T const bottom = -range;
T const top = range;
mat<4, 4, T, defaultp> Result(T(0));
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
Result[2][2] = static_cast<T>(1);
Result[2][3] = static_cast<T>(1);
Result[3][2] = - static_cast<T>(2) * zNear;
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspective(T fovy, T aspect, T zNear)
{
# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT
return infinitePerspectiveLH(fovy, aspect, zNear);
# else
return infinitePerspectiveRH(fovy, aspect, zNear);
# endif
}
// Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep)
{
T const range = tan(fovy / static_cast<T>(2)) * zNear;
T const left = -range * aspect;
T const right = range * aspect;
T const bottom = -range;
T const top = range;
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
Result[2][2] = ep - static_cast<T>(1);
Result[2][3] = static_cast<T>(-1);
Result[3][2] = (ep - static_cast<T>(2)) * zNear;
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear)
{
return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>());
}
}//namespace glm